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A molecular molybdenum-oxo catalyst for generating
hydrogen from water
Hemamala I. Karunadasa1,2, Christopher J. Chang1,2,3 & Jeffrey R. Long1,2

A growing awareness of issues related to anthropogenic climate
change and an increase in global energy demand have made the
search for viable carbon-neutral sources of renewable energy one
of the most important challenges in science today1. The chemical
community is therefore seeking efficient and inexpensive catalysts
that can produce large quantities of hydrogen gas from water1–7.
Here we identify a molybdenum-oxo complex that can catalyti-
cally generate gaseous hydrogen either from water at neutral pH or
from sea water. This work shows that high-valency metal-oxo
species can be used to create reduction catalysts that are robust
and functional in water, a concept that has broad implications for
the design of ‘green’ and sustainable chemistry cycles.

Hydrogen has emerged as an attractive candidate for a clean, sus-
tainable fuel2 and underpins the intense interest in creating artificial
systems that use catalysts based on elements abundant in the Earth to
achieve efficient hydrogen production from water1,3–7. Hydrogenase
enzymes possessing iron and/or nickel cofactors evolve H2 catalyti-
cally from neutral aqueous solution at its thermodynamic potential
with turnover frequencies of 100 to 10,000 moles of H2 per mole of
catalyst per second8–10. However, the large size and relative instability
under aerobic, ambient conditions of these enzymes has led to the
search for well-defined molecular complexes that can produce H2

from water in a non-biological setting.
Many examples of air- and moisture-sensitive synthetic iron–

sulphur clusters have provided valuable insights into hydrogenase
structure and reactivity, although they catalyse proton reduction
from acids in organic solvents at fairly negative potentials of –0.9
to –1.8 V versus SHE (standard hydrogen electrode)7,10–13. Metal
complexes that evolve H2 at more positive potentials also still require
organic acids, additives or solvents3,4,14–18. Although precious metals
can show high catalytic activity for water reduction at low overpo-
tential, the high cost prohibits their widespread use. The creation of
Earth-abundant molecular systems that produce H2 from water with
high catalytic activity and stability thus remains a significant basic
science challenge. We now report a simple molybdenum-oxo com-
plex that catalyses the generation of hydrogen from neutral buffered
water or even sea water with a turnover frequency of 2.4 moles of H2

per mole of catalyst per second and a turnover number of 6.1 3 105

moles of H2 per mole of catalyst. This metal-oxo complex represents
a distinct molecular motif for reduction catalysis that has high activ-
ity and stability in water.

The molybdenum-oxo catalyst was discovered while we were
investigating the second-row transition-metal chemistry of the pen-
tadentate ligand 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine (PY5Me2).
Metallation of PY5Me2 with MoI2(CO)3(MeCN)2 produces an 87%
yield of [(PY5Me2)MoI]I2 (compound 1). As shown by the crystal
structure of compound 1 (Supplementary Fig. 1), the PY5Me2 ligand
enforces a pseudo-octahedral geometry around the Mo(III) centre,

with the metal lying just 0.162 Å above the mean plane of the four
equatorial N atoms. The plane of the axial pyridine ligand makes a
nearly orthogonal angle of 81u with the plane of the equatorial N
atoms, whereas analogous complexes involving first-row transition
metals display much more acute angles in the range 57u–65u (ref. 19).
This structure suggests increased orbital overlap and enhanced s-
and p-bonding between the second-row transition metal and the
ligand. The cyclic voltammogram of compound 1 in acetonitrile
shows a sequence of three reversible redox events centred at half-wave
potentials of E1/2 5 –0.287, –0.799 and –1.321 V versus SHE, corres-
ponding to the [(PY5Me2)MoI]21/11, [(PY5Me2)MoI]11/0, and
[(PY5Me2)MoI]0/1– couples, respectively (Supplementary Fig. 2).
Additional peaks are associated with the redox-active iodide
counter-ions, as confirmed by their absence in the cyclic voltammo-
gram of the ion-exchanged compound [(PY5Me2)MoI](PF6)2 (com-
pound 2), as well as by their presence in the cyclic voltammogram of a
solution of pure iodine. Thus, [(PY5Me2)MoI]21 possesses a
remarkable redox flexibility, with four different redox states access-
ible within a window of just over 1 V.

Water reacts with orange [(PY5Me2)MoI]I2 to release hydrogen and
generate a green molybdenum-oxo complex, as isolated in
[(PY5Me2)MoO]I2 (compound 3). Carrying out the reaction in an
O2-free atmosphere with H2

18O yields [(PY5Me2)Mo18O]I2, with the
expected isotopic nMo 5 O stretching frequency shift from 961 cm–1 to
918 cm–1. The two-electron reductive cleavage of water to release H2

implies that [(PY5Me2)MoO]31 is initially formed and subsequently
reduced to [(PY5Me2)MoO]21 by iodide. The viability of this process is
supported by the cyclic voltammogram of compound 3, which displays
reversible [(PY5Me2)MoO]31/21 and [(PY5Me2)MoO]21/11 couples
at E1/2 5 1.402 and 20.829 V versus SHE, respectively, bracketing the
iodide redox chemistry, as well as by the electronic absorption spectrum
of the reaction mixture, which shows the characteristic bands for
iodine. To access a cleaner two-electron reaction with water,
the Mo(III) compound [(PY5Me2)Mo(CF3SO3)](CF3SO3)2 (com-
pound 4) was reduced with one equivalent of KC8 to yield
[(PY5Me2)Mo(CF3SO3)](CF3SO3) (compound 5). As depicted in
Fig. 1, the crystal structure of compound 4 contains a pseudo-octahed-
ral triflate complex with a Mo(II)–O distance of 2.117(9) Å. Reaction
with water indeed affords [(PY5Me2)MoO](CF3SO3)2 (compound 6)
with the concomitant evolution of H2, demonstrating the ability of a
Mo(II)–PY5Me2 complex to reduce water and eliminate H2. The crystal
structure of compound 6 confirms a pseudo-octahedral Mo(IV)-oxo
complex with a short Mo – O bond of 1.685(9) Å.

The observations that [(PY5Me2)Mo(CF3SO3)]11 can cleave
water to generate H2 and that [(PY5Me2)MoO]21 can undergo mul-
tiple reductive processes led us to test the Mo(IV)-oxo complex in an
electrochemical cycle for generating hydrogen from water. For ease of
synthesis and to avoid the redox chemistry associated with iodide,

1Department of Chemistry, University of California, Berkeley, California 94720, USA. 2Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA. 3Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.

Vol 464 | 29 April 2010 | doi:10.1038/nature08969

1329
Macmillan Publishers Limited. All rights reserved©2010

www.nature.com/doifinder/10.1038/nature08969
www.nature.com/nature
www.nature.com/nature


these experiments were performed using [(PY5Me2)MoO](PF6)2

(compound 7) obtained via reaction of compound 3 with TlPF6.
The cyclic voltammogram of compound 7 (Fig. 2b) indeed matches
that of compound 3 minus the iodide redox chemistry. Beyond the
reversible [(PY5Me2)MoO]21/11 couple, a sequence of three irre-
versible reduction peaks is observed. The first of these waves, at
–1.301 V, presumably corresponds to formation of the neutral Mo(II)
complex [(PY5Me2)MoO], which undergoes a further reaction
on the timescale of the experiment. The cyclic voltammogram of
compound 7 in 1 M aqueous KCl displays a quasi-reversible
[(PY5Me2)MoO]21/11 couple centred at E1/2 5 –0.58 V, followed by
an irreversible reduction at –1.06 V (Fig. 2c). Formation of the putat-
ive Mo(II) species precedes a sharp rise in current at –1.15 V, indi-
cating a catalytic process for water activation; mass spectrometry
confirms that H2 is evolved from these experiments. Subsequent mea-
surements were performed in phosphate supporting electrolytes buf-
fered to pH 7. At a scan rate of 100 mV s21 in 0.6 M phosphate buffer,
the onset of the catalytic current occurs at about –0.93 V, correspond-
ing to an overpotential (applied potential minus thermodynamic
potential for H2 evolution at the same pH) of 0.52 V (Fig. 3a).

Controlled potential electrolysis (CPE) experiments were carried
out in a double-compartment cell to assess the efficacy of catalyst 7.
As shown in Fig. 3b, the amount of charge used in 2 min increases
with increasing overpotential until a saturation value of 0.43 C is
reached at 0.64 V. This saturation behaviour occurs because the
potential drop between the working and auxiliary electrodes exceeds
the maximum output voltage of the potentiostat at high current
densities, and is not an inherent property of the catalyst. Assuming,
as validated below, that every electron is used for the reduction of
protons, we also calculated the turnover frequency for the catalyst.
The turnover frequency increases with overpotential, reaching a
maximum of 1,600 moles of H2 per mole of catalyst per hour
(Fig. 3c). Control experiments performed using Na2MoO4 or
PY5Me2 showed no catalytic activity, and no catalytic activity was
observed when fresh electrolyte was added to a used mercury elec-
trode. Moreover, no solid deposits were observed on the mercury
electrode, which remained shiny even after extended and repeated
electrolysis experiments20.

To optimize catalytic turnover frequency and to assess the long-
term stability of compound 7, we performed extended CPE experi-
ments using a frit of greater diameter and a higher concentration of

electrolyte to minimize internal resistance. Remarkably, the catalyst
maintains activity under these conditions for at least 71 h, at which
point the measurement was stopped because the concentration of
hydroxide ions in the working electrode compartment overcame the
capacity of the buffer. Thus, catalyst 7 is effective for long durations at
close to neutral pH, with its durability apparently limited only by the
strength of the buffer. The current levelled out at an average of
179(5) mA, (standard deviation given within parentheses) whereas
a control experiment run under identical conditions, but without the
catalyst, showed a current of just 1.1(1) mA. The charge accumulated
over this period, after subtracting the contribution from the blank
solution, resulted in a turnover number of 6.1 3 105 moles of H2 per
mole of catalyst with a turnover frequency of 8,500 moles of H2 per
mole of catalyst per hour (or 2.4 moles of H2 per mole of catalyst per

+ H2
– CF3SO3

–

+ H2O

[(PY5Me2)Mo(CF3SO3)]1+ [(PY5Me2)MoO)]2+

Figure 1 | Reaction of [(PY5Me2)Mo(CF3SO3)]11 with water to form
[(PY5Me2)MoO]21 and release H2. The generation of H2 was confirmed by
mass spectrometry, and the oxo ligand was shown to originate from water
through observation of the expected isotopic shift for nMo 5 O in the infrared
spectrum, using H2

18O. The structures depicted are the results of single-
crystal X-ray analyses of compounds 5 and 6, with green, yellow, light blue,
red, blue and grey spheres representing Mo, S, F, O, N and C atoms,
respectively; H atoms are omitted for clarity. Selected interatomic distances
and angles for compounds 5 and 6 are as follows. Mo–O: 2.117(9) Å,
1.685(9) Å; mean Mo–Nequatorial: 2.14(2) Å, 2.154(3) Å; Mo–Naxial:
2.097(9) Å, 2.297(8) Å; mean O–Mo–Nequatorial: 93(3)u, 98(1)u; O–Mo–Naxial:
176.2(4)u, 179(1)u; mean Nequatorial–Mo–Nequatorial: 90(10)u, 89(8)u.
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Figure 2 | Cyclic voltammograms of compounds 2 and 7. a, A 5 mM
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second) (Fig. 4). To the best of our knowledge, these values, which
represent lower bounds, are significantly higher than any other
reported molecular catalysts for electrochemical hydrogen production
from neutral water, including a dinickel complex that exhibits a turn-
over number of 100 moles of H2 per mole of catalyst with a turnover
frequency of 160 moles of H2 per mole of catalyst per hour at an
overpotential of 820 mV (ref. 21) and a cobalt complex displaying a
turnover number of 5 moles of H2 per mole of catalyst with a turnover
number of 0.4 moles of H2 per mole of catalyst per hour at an over-
potential of 390 mV (ref. 22). Further discussion of electrocatalysts
that operate in organic as well as in acidic aqueous media is provided
in the Supplementary Information.

Assuming an application using such molecules would involve hav-
ing them arranged in a single layer on the electrode surface, it is of
interest to compare the performance of compound 7 with the hydro-
genase enzymes on a per area basis23. Employing crystallographic unit
cells, compound 7 exhibits an estimated footprint of 93 Å2 per mole-
cule, while hydrogenase enzymes occupy 5,400–12,000 Å2 per mole-
cule (Supplementary Information). Thus, packing together the
number of molybdenum catalyst molecules needed to cover the area
of a single hydrogenase protein can be expected to deliver a hydrogen
production rate of 140–300 H2 molecules per second, while also
offering far greater stability.

To test the stability of compound 7 in the absence of a buffer, CPE
experiments were performed in a 1 M aqueous KCl solution. Here,
accumulation of hydroxide anions as H2 is generated leads to an
increase in pH. The accumulated charge within a given time period
can be used to calculate the amount of H2 produced, and, therefore,
the concentration of OH2 ions in solution. Notably, the agreement
between calculated and observed pH changes during 60 min of elec-
trolysis (Supplementary Fig. 5) establishes that the catalyst indeed
operates at Faradaic efficiency. Mass spectrometry studies indicate a
reduced stability for [(PY5Me2)MoO]21 at high pH, with a signifi-
cant dissociation of the molybdenum centre from the PY5Me2 ligand
to generate [MoO4]22 occurring above pH 12.

We also evaluated the catalytic performance in sea water, the
Earth’s most abundant proton source (Supplementary Fig. 6). On
adding compound 7 to a sample of California sea water with no
added electrolyte, the onset of catalytic current was observed at about
–0.81 V versus SHE. In the absence of compound 7, a catalytic current
was not apparent until a potential of –1.60 V was attained. CPE
experiments performed for short durations in sea water were remark-
ably similar to the results obtained in pH 7 buffered water. The cur-
rent saturated at 0.32 C at an applied potential of –1.40 V versus SHE,
corresponding to a turnover frequency of 1,200 moles of H2 per mole
of catalyst per hour at an overpotential of 0.78 V.

We tentatively propose the catalytic cycle depicted in Fig. 5 for the
generation of hydrogen from water mediated by compound 7. One-
electron reduction of [(PY5Me2)MoO]21 gives [(PY5Me2)MoO]11,
with addition of a second electron providing a putative
[(PY5Me2)MoO] species. We note that the electrons are being added
to orbitals that possess Mo 4dxz/4dyz character with p-type antibond-
ing contributions from the oxo ligand. Reduction should weaken the
Mo–O bond and enhance its nucleophilicity, enabling it to depro-
tonate nearby water molecules to produce the reactive intermedi-
ate [(PY5Me2)Mo(H2O)]21 and release two OH2 anions.
Alternatively, each electron transfer step could be immediately
followed by, or even coupled to, a proton transfer from water,
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Figure 3 | Electrochemical data for a 7.7 mM solution of
[(PY5Me2)MoO](PF6)2 (7) in a 0.6 M phosphate buffer at pH 7. a, Cyclic
voltammograms of the buffer with (red line) and without (blue line)
compound 4 at a scan rate of 50 mV s21. b, Charge build-up versus time at
various overpotentials. c, Turnover frequency versus overpotential. The
background solvent activity has been subtracted from the plots in b and
c. Overpotential 5 | applied potential minus E(pH 7) | . Turnover frequency
calculations assume (see Supplementary Fig. 6) that every electron is used for
the generation of hydrogen, and provide only a lower bound, given that not all
catalyst molecules are in proximity to the electrode surface at a given time.
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giving rise to a cycle in which [(PY5Me2)Mo(OH)]21 precedes the
formation of [(PY5Me2)Mo(H2O)]21 (Supplementary Fig. 8).
Although it is not widely used, ligand-centred proton reduction
has been proposed as the basis for particular molecular catalysts
that operate in acidic organic media16,17, as well as for water reduc-
tion on MoS2 surfaces24,25. Protonation of a bridging sulphido
ligand has also been postulated in nitrogenase H2 evolution26.
The reduced aquo complex, [(PY5Me2)Mo(H2O)]21, in the pre-
sent scheme could then eliminate H2—perhaps in a manner akin
to the reductive cleavage of water by [(PY5Me2)Mo(CF3SO3)]11

(Fig. 1)—to regenerate [(PY5Me2)MoO]21. One possible pathway
for this last transformation would be via oxidative addition and
a-abstraction27–30.

Several observations are consistent with the above Mo(II)/Mo(IV)
cycle. Under reductive catalytic conditions, CPE solutions of green
catalyst 7 initially turn dark yellow and then change within 10 min to
a purple-brown colour that is maintained for the remainder of the
electrolysis (Supplementary Fig. 9). Once the potential was switched
off, the solution quickly changed back to the dark yellow colour.
Moreover, upon exposure to air, electrolysed solutions regenerate
green [(PY5Me2)MoO]21, as verified by ultraviolet-visual and infra-
red spectroscopy. We therefore speculate that a PY5Me2 complex of
Mo(II) is responsible for the reductive cleavage of water to release H2

and OH2 ions.
The discovery of a molecular molybdenum-oxo catalyst for gen-

erating hydrogen from water without the use of additional acids and/
or organic cosolvents establishes a new chemical paradigm for cre-
ating reduction catalysts that are highly active and robust in aqueous
media. Ongoing efforts are focused on modifying PY5Me2 and
related platforms to further facilitate charge- and light-driven cata-
lytic processes, with particular emphasis on chemistry relevant to
sustainable energy cycles.

METHODS SUMMARY
Electrochemical methods. For the electrochemical studies we used a mercury

pool working electrode with a surface area of 19.6 cm2, which was stirred con-

stantly during the CPE experiments. Electrical contact to the mercury pool was

achieved through a platinum wire that remained immersed below the surface of

the mercury, thereby avoiding contact with the solution. A 20.5 cm2 platinum

gauze (52 mesh, woven from 0.1-mm-diameter wire) was used as the auxiliary

electrode and was separated from the solution in the working electrode com-

partment by a medium-porosity sintered-glass frit. The reference electrode was a

commercially available aqueous Ag/AgCl electrode, which was positioned within

5 mm of the working electrode, and the potentials are reported with respect to

SHE by adding 0.195 V to the experimentally obtained values. The working

electrode compartment contained 5–100 ml of electrolyte solution, which was

thoroughly sparged and kept under a blanket of water-saturated nitrogen during

the experiments. Unless otherwise noted, a 0.6 M pH 7 phosphate buffer was

used as electrolyte. Extended electrolyses lasting longer than an hour were con-

ducted in a larger cell containing 170 ml of 1.8 M pH 7 phosphate buffer in each

compartment. The solutions in both compartments were vigorously stirred

during the electrolysis. Sea water was obtained from Ocean Beach, San

Francisco, and was passed through a coarse paper filter before use to remove

any particulate matter. iR (current times internal resistance) compensation was

used in all experiments to account for the voltage drop between the reference and

working electrodes using the software supplied with the BAS CV-50W cyclic

voltammetry instrument.

The synthesis and characterization of new compounds are detailed in the

Supplementary Information.
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